© @ intro.html M Open with Google Chrome

-

HTML

intro.html

Al-Powered Competitive
Programming

My Hacker Cup Experience

Anton Pidkuiko - 2025.01.24

v

B statement.txt

>
>
>
>
>
>

< PROBLEMS
Name
T7 AplusB
full_in.txt

sample_in.txt
sample_out.txt

"7 Fall in Line
77 Line by Line

Line of Delivery (Part 1)
. Line of Delivery (Part 2)
=7 Sort array

[—

7 Walk the Line

-—

e

—

D @ statement.txt
A plus B

Simply add two integers A and B.
Constraints

(1 =T =< 100)

(1 =A, B=s 105)

Input Format

Input begins with an integer T, the number of test cases.
Each case is a single line containing the integers A and B.

Output Format

For the i-th test case, print "'Case #i:"

" followed by A + B.

Q @ sample_in.txt

4
2 50
3 10
13 37
950 95

< PROBLEMS
Name
v [AplusB
full_in.txt

B sample_in.txt

sample_out.txt
statement.txt
Fall in Line
Line by Line
Line of Delivery (Part 1)
Line of Delivery (Part 2)
Sort array
7 Walk the Line

FEEEE

v

B sample_out.txt

>
>
>
>
>
>

< PROBLEMS
Name
T7 AplusB
full_in.txt

sample_in.txt

statement.txt
T Fallin Line
=7 Line by Line
77 Line of Delivery (Part 1)
T7 Line of Delivery (Part 2)
=7 Sort array
7 Walk the Line

Case #1:
Case #2:
Case #3:
Case #4:

@ © sample_out.txt

v

B full_in.txt

>
>
>
>
>
>

< PROBLEMS

Name

"7 AplusB

sample_in.txt
sample_out.txt
statement.txt
™7 Fall in Line
77 Line by Line
Line of Delivery (Part 1)
. Line of Delivery (Part 2)
=7 Sort array

[e—

7 Walk the Line

-—
e

—

O @ full_in.txt

174
2 50
310
13 3
950

NN

7
95

< PROBLEMS
Name
v [AplusB
full_in.txt

sample_in.txt
sample_out.txt
statement.txt
Fall in Line
Line by Line
v [Line of Delivery (Part 1)
full_in.txt
sample_in.txt
sample_out.txt
> [Line of Delivery (Part 2)
> 07 Sort array
> T Walk the Line

QO @ statement.txt th |[cC

This problem shares some similarities with problem D2, with key differences in bold.x

Candice is playing a solitaire game of [curling] (https://en.wikipedia.org/wiki/Curling) on a \(1\)-dime
ice, xkusing stones of negligible sizexx. She will throw \(N\) stones (numbered \(1\) to \(N\)) from po
targeting a position \(G\) units to the right. In curling, though we say a stone is “thrown”, it’s actu
the ice.

The \(i\)th stone will be thrown with energy \(E_i\), and will travel \(E_i\) units to the right unless
with another stone, in which case it will transfer its remaining energy to the stone it hits. Formally,
process until all stones are stationary:

* *xxIf the moving stone is at the same position as a stationary stone, the moving stone stops, and the

now the moving stone with the remaining energy of the previous moving stone.xx

% Otherwise, the moving stone moves \(1\) unit to the right and its energy is reduced by \(1\). If the
has energy \(0\), it becomes stationary.

After all of the stones are thrown, which stone is closest to the goal position \(G\), and how far away
is it?

Constraints

\(1 \leq T \leq 85\)

\(1 \leq N \leq 3001, }000\)

\(1 \leq E_i, G \leq 1{,}000{, }oo0\)

*kIn each test case, no two stones are thrown with the same energy.*x

The sum of \(N\) across all test cases is at most \(2{,}000{,}000\).

Input Format

Input begins with an integer \(T\), the number of test cases. Each case starts with a line that contain
(N\) and \(G\). Then \(N\) lines follow, the \(i\)th of which contains \(E_i\).

Output Format

For the \(i\)th test case, print "'Case #i:" " followed by the index of the stone that ends up closest
(G\), and how far away it is from \(G\). If there’s a tie, output the stone with the lowest index.

C

Problem \

MVP

statement.txt J

LLM

write code

Execute c++
compile & run

sample_out.

Example
sample_in.txt
txt

Full input
full_in.txt

)

gd

Full output
full_out.txt

)

w4

deepseek-ai/
DeepSeek-R1

New chat

@ diagram.png
PNG 95.54KB

write a nodejs script for my mac that solves a competitive programming problem using Deepseek
LLM API

| want to call the script like this:
$ node ./solve.js ./problem_dir/

@& Thinking... ~

Okay, the user wants a Node.js script for their Mac that solves a competitive programming problem using the
Deepseek LLM API. The script should be called with a problem directory, which contains several files like the

problem statement, input examples, and full inputs/outputs. Let me break down the requirements.

First, the script needs to read the problem statement from problem_dir/problem_statement.txt. Then, it should
send this to the Deepseek LLM API to generate the C++ code. Once the code is generated, the script has to
compile and run it against the sample inputs (sample_in.txt) to check if the output matches sample_out.txt. If it

does, proceed to run the code with the full input (full_in.txt) and write the result to full_out.txt.

Hmm, | need to consider how to structure the script. Let's start by requiring necessary modules like fs for file
handling, child_process for executing commands, and maybe axios for API calls. Wait, the user mentioned
Deepseek LLM API. | need to check if they have an API key. Oh right, the script should include the API key, so the

user needs to set it as an environment variable.

JS solve.js X

Js solve.js > @ main > [@] requiredFiles
async function main() {

// Read problem files

const [statement, sampleIn, sampleOut] = await Promise.all([
fs.readFile(path.join(problemDir, 'statement.txt'), 'utf8'),
fs.readFile(path.join(problemDir, 'sample_in.txt'), 'utf8'),
fs.readFile(path.join(problemDir, 'sample_out.txt'), 'utf8')

1);

// Generate solution code
const prompt = "Write a C++ solution for this programming problem.
The code must read from stdin and write to stdout. Ensure it passes the sample test case.

Problem Statement:
${statement}

Sample Input:
${sampleln}

Sample Output:
${sampleOut}

Provide only the C++ code in a code block.;

+ry I

v

B solution.cpp

PROBLEMS

Name

A plus B
full_in.txt
full_out.txt
sample_in.txt
sample_out.txt

@ solution

statement.txt

_ Fallin Line
_ Line by Line

Line of Delivery (Part 1)
Line of Delivery (Part 2)

~ Sort array
. Walk the Line

@ @ solution.cpp

#include <iostream>
using namespace std;

int main() {
int T;
cin > T;
for (int 1 = 1; i <= T; ++i) {
int A, B;
cin >> A >> B;
cout << "Case #" << i1 << ": " << A + B << endl;
}
return 0;

Q @ full_out.txt

Case #1: 52
Case #2: 13
Case #3: 50
Case #4: 1045
Case #5: 3
Case #6: 4
Case #7: 5
< PROBLEMS Case #8¢ 6
Case #9: 7
Case #10: 97
Name Case #11: 98
= Case #12: 99
v A plus B Case #13: 100
full in.txt Case #14: 101

Case #15: 1001

B full_out.txt Case #16: 1002

. Case #17: 1003

sample_in.txt Case #18: 1004
sample_out.txt Case #19: 1005
Case #20: 1095

B solution Case #21: 1096
solution.cpp Case #22: 1097

Case #23: 1098

statement.txt Case #24: 1099

> 7 Fallin Line Case #25: 962
-— . Case #26: 120
2@l Line by Line Case #27: 544
> T Line of Delivery (Part 1) Case #28: 456
T 2 Case #29: 296
> _ Line of Delivery (Part 2) Case #30: 766
> Bl Sort array Case #31: 945
-— . Case #32: 1044
> . Walk the Line Case #33: 676

Case #34: 337
Case #35: 862

P Ty S g RS < >

C

Problem \

statement.txt J

o1-preview

LLM

write code

Execute c++
compile & run

sample_out.

Example
sample_in.txt
txt

Full input
full_in.txt

)

gd

Full output
full_out.txt

)

Elo / percentile

Codeforces Rating Distribution (active user, number of participations >= 6) March 5, 2024

5000

4000

Codeforces Elo / percentile

2000 -

Number of contestants per bin
8
8

1673 / 89th

1500 -
1258 / 62nd 2000

1000 A
1000

500 A

0- %5 3000 350
gpt4o ol ol ol-ioi .
preview

ol-preview
1258 Codeforces rating

Elo / percentile

Codeforces Rating Distribution (active user, number of participations >= 6) March 5, 2024

5000

n

Codeforces Elo / percentile e

Qo
g
£ 3000
2000 - 5 Ly ARt
s 1673/ 89th > tourist
-4 o
1258 / 62nd e
1000 A
1000
500 +
0- % 3000 350
gpt4o ol ol ol-ioi ’ 4009
preview

ol-preview
1258 Codeforces rating

Elo / percentile

2000 -

1500 A

1000 -

500

gptd4o

Codeforces Elo / percentile

1258 / 62nd

ol
preview

1673 / 89th

ol

1807 / 93rd

ol-ioi

Codeforces Rating Distribution (active user, number of participations >= 6) March 5, 2024

5000

n

4000

g
8

Number of contestants per bl
8
8

1000

ol-preview
1258 Codeforces rating

Legendary Grand ter
tourist
| 3000 3500
2727 4009
OpenAl o3

Problem
statement.ixt

LLM
write code

#
/
~

__ —plz optimize algo_ __

e —
=
__ plzfix bug— -
~N
AY
_ | Validate
" | test samples

Example
sample_in.txt
sample_out.txt

Execute c++

s / Full output

compile & run
A
Full input
full_in.txt

. \ full_out.txt

& Hi, I'm DeepSeek.

How can | help you today?

below is the code that solves a competitive programming problem using LLM.

it works fine but | need you to make a more advanced version of it:

1) before computing the answer, validate the solution using the sample file (simply
compare the expected result with output)

2) if something goes wrong (wrong answer or compilation error or execution takes longer
than 10 sec) - send error back to the LLM thread, asking model to fix their code.

think hard how to refactor it nicely with OOP. | just want to launch the cli script and get my

fuII_out.ﬁz(t, and solution.cpp ready.

THE CODE:
import path from 'path’;

&3 DeepThink @ search @ 0

process.exit(1);

try {
cor

solver = new ProblemSolver(problemDir);
await solver.solve();
console. log('Successfully generated solution.cpp and full_out.txt');

} catch (error) {
console.error('Error:', error.message)
process.exit(1)

}

}

main().catch(err => {
console.error('Unexpected error:', err)
process.exit(1);

3

Key improvements and structure:

OOP Design: Encapsulated all problem-solving logic in the ProblemSolver class
Error Handling: Added custom error types and detailed error reporting
. Validation Pipeline:
Compilation check
Sample input/output validation
Timeout handling (10 seconds)

Retry Mechanism: Up to 3 attempts with error feedback to LLM

5. Modular Methods: Each step (code generation, compilation, validation) has dedicated methods

>. Improved Error Messages: Clear error context sent back to LLM for better fixes

’. File Management: Centralized file paths and validation
Usage remains the same:

bash

node solve.js ./problem_dir/

async solve(

await this.initialize();
while (this.attempts < this.maxAttempts
try {
await this.generateCode();

1is.compileCode();

await this.validateSample();
await this.processFulllnput();
return;

} catch (error) {
s.handleError(error);

1is.attempts++;

throw new ProblemSolverError(Failed after ${this.maxAttempts} attempts’

async generateCode()

console. log(this.messages

const completion = await this.openai.chat.completions.create({
model: "deepseek-reasoner",
messages: this.messages,

i

const response = completion.choices|[@].message.content;

const codeBlock = response.match(/ " cpp\n([\s\S]+?)\n""*/);

if (!codeBlock
throw new ProblemSolverError('No code block found in LLM response');

await fs.writeFile
path.join(this.problemDir, ‘solution.cpp'),
codeBlock[1

this.messages.push({
role: 'assistant’',
content: response

i

compileCode()
const result = spawnSync('g++', [
'-std=c++17',

-0', 'solution',

H

Scoreboard - Round 3 - Al Track

Rank Contestant Score Total Time A: Set, Cover B: Least Commo... C: Coin Change D: Min-flow Max-... E1: All Triplets S... E2: All Triplets S...
1 &) & Artigenz Coders 22 0:10:19 [x) (V] & (%]
2 - Q Anton Pidkuiko (anton10xr) 0 0:00:00 (] [x]

2 b & Artigen Coders 0 0:00:00

2) & DavidTittsworth 0 0:00:00

2 ”ﬁv . Elizabeth Lijia Hong (MakingltHappen) 0 0:00:00 (%]

2 ’ Geremie Yeo Yun Siang (Geremie Yeo + Sa.. 0 0:00:00 @ (x] (%] @ (%]
2 (5 & Kateryna Lytvynets 0 0:00:00 &

2 Maheswari Rajendran 0 0:00:00

2 Maksym Bidnyi 0 0:00:00 [} o [5) (%]

2 Mridul Kumar 0 0:00:00

2 Nitin Gandem 0 0:00:00

2 Qi Tang 0 0:00:00

2 & Ryoga Tanaka (evimalab) 0 0:00:00 (%} (%]

2 = @ Siva Kishore SK (Project Ramanujan) 0 0:00:00 [%]

2 [* | Donggi Huang 0 0:00:00 (%) (%) [5¢)

2 ’ Tong Hui Kang (huikang) 0 0:00:00 [x]

2 @ viHan 0 0:00:00 Q () o

Scoreboard - Round 3 - Human Track

Rank Contestant Score Total Time A: Set, Cover B: Least Commo... C:Coin Change D: Min-flow Max... E1: All Triplets S... E2: All Triplets S...
1 == &% Benjamin Qi (Benq) 9% 8:07:22 o () ® © o

2 = e Maxkcum lopoxosckuit (maksim1744) 78 7:33:35 () () (] (] (]
3 Zigian Zhong 78 7:54:09 (] (] (] (] o
4) Yuhao Du (apiad) 78 9:06:51 @ o @ [©
5 € 56885 (Slime) 78 11:37:37 o © [o o
6 = 6 Mateusz Radecki (Radewoosh) 74 4:55:42 o (] (] (]

7 = @ Nealwu 74 5:04:54 o [o ®

8 o @ z2# (ainta) 74 511:18 [[o [<
9 ® & Nishimoto Masaki (maspy) 74 5:32:25 o (] (] o (]
10 o & 9y (molamola) 74 6:10:15 o o (] (] Q
11 = ' Ivan Safonov (isaf27) 74 6:28:06 o () () ()

12 o 9 Wojtek Nadara (Swistakk) 74 7:35:55 o (] o (]

13 ® o Yui Hosaka (hos.lyric) 74 7:37:12 o () () ()

14 . Harris Leung (Xopowo) 74 8:39:46 (] (] (] (] (%)
15 = ‘ Andrew He (ecnerwala) 61 5:04:30 o (] (] o
16) ‘$ Hirotaka Isa (HIR180) 57 4:30:59 (%) () (] (] (]
17 E3 & !lyaKornakov (ilyakor) 57 5:19:00 (%] (] o (] (%)

Break down the problem

C

Problem \

statement.txt J

v

e
74

W

LLM
write code

__ —Pplz optimize algo_ __

—
—

-

__ plz fix bug—_ -

~
\

Validate
test samples

Example
sample_in.txt
sample_out.txt

Execute c++
compile & run

A

Full input
full_in.txt

o

Full output
full_out.txt

)

Break down the problem

Problem
statement.txt

o —plz optimize algo_ __

- ~
-~ ~
o ~
/ .plz fix bug—_ N
- g N\
P— —
LLM ' | & ALLM | Validate - Execyte cH | 0
verbal solution write code test samples compile & run \
Example :
sample Fi:nxt Fullinput
e full_in.txt

. sample_out.txt

Full output
full_out.txt

& Hi, I'm DeepSeek.

How can | help you today?

Below is the code that solves a competitive programming problem using LLM.
it works fine but | need you to make a more advanced version of it:

instead of asking to write the solution c++ code directly, use two LLM prompts:

1) writes VERBAL description of the solution, including big O notation
2) uses the description to write the c++ solution

CURRENT CODE:

import path from 'path’;
import fs from 'fs/promises';
import { spawnSync } from 'child_process';

gﬁ DeepThink @ search

<

PROBLEMS

Name

> Aplus B
v [Fall in Line

>

-—

actual_sample_out.txt
attack_vector.txt

full_in.txt

full_out.txt

full_output.txt
image_1528828545185163_ur
prompts_log.txt

sample_in.txt

sample_out.txt

@ solution

- solution.cpp
statement.txt

Line by Line

Line of Delivery (Part 1)

Line of Delivery (Part 2)

To solve this problem efficiently, we'll use a probabilistic approach leveraging randomization and hashing. The goal is
to estimate the largest number of ants that are already aligned (colinear), and then calculate the minimum number of
ants that need to move (which is \(N - K \), where \(K \) is the maximum number of colinear ants).

Here's the strategy:

1. %kRandom Samplingxx: For each test case, perform several iterations (e.g., 10 iterations). In each iteration:
- Randomly select an ant as the reference point \(P_i \).

- For all other ants \(P_j \), compute the slope between \(P_i \) and \(P_j \).

- Store the slopes in a hash map, reducing fractions to their lowest terms to handle sloped lines accurately.
- The frequency of each slope gives us the number of ants aligned with \(P_i \) on a particular line.

2. xkEstimating Maximum Colinear Ants*x: Keep track of the maximum count of colinear ants found in all iterations. Due
to the random selection and multiple iterations, there's a high probability that we'll find a line with a large number
of ants if such a line exists.

3. xxCalculating the Answersxk: Subtract the maximum number of colinear ants \(K \) from the total number \(N \) to
get \(N - K \), the estimated minimum number of ants that need to move. Since any answer between \(M \) and \(2M \)
is acceptable, this estimation suffices.

This method operates in \(0(s \cdot N) \) time per test case, where \(s \) is the number of iterations (a small
constant), making it efficient for large \(N \). By using random sampling and accepting approximate solutions within a
tolerated range, we can provide a feasible answer within the time constraints.

solution mentions
"persistent segment tree"
]
\ __ _—plz optimize algo_ __
N — — -~ R
e >~ ~

__ plzfix bug—_ = ®
~ \

\ 7

\ /4 \ \
LLM LLM Validate _ | Execute c++ Full output
verbal solution write code test samples | compile & run full_out.txt

A

Problem
statement.txt

Example
sample_in.txt
sample_out.txt

Full input
full_in.txt

solution mentions provide

"persistent segment tree" persistent_segment_tree.cpp
| |
\ \ __ —plz optimize algo_ __
\ — —_— ~ R
~ X —~ g
~ 7~ N
N % N / . plz fix bug__ - X
~ ~ N\
| , , * b’ \ \

Problem
statement.txt

LLM LLM Validate Execute c++ Full output
) B . —_ > .
verbal solution write code test samples compile & run full_out.txt

A

Example
sample_in.txt
sample_out.txt

Full input
full_in.txt

4" awesome-competitive-programming Public

¥ master ~

'._7}'7 Inishan Merge pull request #148 from mlarocca/patch-1 &

3 .travisyml

[CONTRIBUTING.md
LICENSE.md
README.md
README.pdf
_config.yml

index.md

D DD D D

B

README &3 CC-BY-4.0 license

Awesome Competitive Programming <

A curated list of awesome Competitive Programming , Algorithm and Data Structure resources.

¥ 3 Branches © 0 Tags

Q Go tofile t

Remove dated items, update information and fix link redir...

Update CONTRIBUTING.md

Added OLYMPIADS IN INFORMATICS (an international jou...

Merge pull request #148 from mlarocca/patch-1

Add pdf version of the awesome list (courtesy of markdo...

Set theme jekyll-theme-cayman and migrate Page Gener...

Set theme jekyll-theme-cayman and migrate Page Gener...

awesome

& Watch 421 ~

2026f37 - last month 'G) 362 Commits

7 years ago
8 years ago
9 years ago

last month
8 years ago
5 years ago

5 years ago

7 =

Created with a view to connecting people to information, this list below contains a complete collection of all the
fantastic resources |'ve collected over the course of my 11-vear competitive proagramming career. | hope vou'll find

% Fork 2.6k -

Y¢ Star 12.9k

About

¥ A curated list of awesome
Competitive Programming, Algorithm
and Data Structure resources

@ codeforces.com/blog/entry/23054

list awesome algorithm practice
data-structure contest
competitive-programming quora
awesome-list programming-contests

learning-materials reference-materials

Readme
CC-BY-4.0 license
Activity

12.9k stars

421 watching

< O % < 2B

2.6k forks

Report repository

Releases

No releases published

v

@ /O Z—p B:'|3 v C+ fenwick_tree_2d.cpp X M

v ALGO_RAG_DATA data_structure > €+ fenwick_tree_2d.cpp
> combinatorics // Efficient implementation of Fenwick 2D
/%%
* Description: Computes sums a[i,j] for all i<I, j<J, and increases single elements a[i,j].
* Requires that the elements to be updated are known in advance (call fakeUpdate() before init(

v data_structure
G+ binary_heap_indexed.cpp

€+ binary_trie.cpp x Time: $0(\log”2 N)$. (Use persistent segment trees for $0(\log N)$.)
G+ cartesian_tree.cpp * Status: stress-tested
G+ centroid_decomposition.cpp */

G+ disjoint_sets_ranked.cpp struct FT2 {

€ disjoint_sets.cpp vector<vi> ys; vector<FT> ft;

G+ disjoint_sparse_table.cpp FT2(int limx) : ys(limx) {}

G dsu.cpp void fakeUpdate(int x, int y) {

¢ fenwick_2d.cpp for (; x < sz(ys); x |= x + 1) ys[x].push_back(y);

G+ fenwick_tree_2d.cpp \}/oid init() {

€ fenwick_tree_interval.cpp for (vi& v : ys) sort(all(v)), ft.emplace_back(sz(v));

G+ fenwick_tree_on_map.cpp } =
G fenwick_tree.cpp J int ind(int x, int y) {

return (int) (lower_bound(all(ys[x]), y) - ys[xl.begin()); }

G ick.
fenwick.cpp void update(int x, int y, 11 dif) {

G+ hash_map.cpp

for (; x < sz(ys); x |=x + 1)
G+ heavy_light_decomposition.cpp ftx].update(ind(x, y), dif);
€+ heavy_light.cpp ¥
@ kd_ tree.cpp 11 query(int x, int y) {
11 sum = 0;
€ KDtree.cpp for (i;{xs X & X' ="1)
€ lazy_segment_tree.cpp sum += ft[x-1]l.query(ind(x-1, y));
G+ LCA_RMQ.cpp return sum;

G- LCA.cpp }

FILE:
FILE:
FILE:
FILE:
EI1tE:
ETLEE:
FILE:
FILE:
FILE:
FILE:
FILE:
ET1E:
ETE:
FILE:
FILE:
FILE:
Fal =
FILE:
FILE:
ETLE:
FILE:
FILE:
FILE:
FILE:
FILE:
ETILE:

i e s) e T

algo_rag_data/graph/MaxFlowHLPP.h | TITLE: Classic MaxFlow Algorithm |

algo_rag_data/graph/MaxFlowPR.h | TITLE: Max flow: Push relabel in 0(V~2 E”0.5) with gap heuristic |
algo_rag_data/graph/MinCostMaxFlowPR.h | TITLE: Min Cost Max Flow PR |

algo_rag_data/graph/MinCostMaxFlowSPFA.h | TITLE: Min Cost Max Flow — SPFA |

algo_rag_data/graph/MinimumCut.h | TITLE: Minimum cut between every pair of vertices (Stoer Wagner) |
algo_rag_data/graph/StableMarriage.h | TITLE: Matching algorithm. COMPLEXITY: M"~2 |
algo_rag_data/graph/StronglyConnected.h | TITLE: build DAG of strongly connected components. Returns: adjacency list of DAG |
algo_rag_data/graph/articulation_points.cc | TITLE: Block-Cut Tree (Articulation points / Biconnected components) |
algo_rag_data/graph/betweenness_centrality.cc | TITLE: Betweenness centrality of undirected unweighted graph (Brandes) |
algo_rag_data/graph/bfs_using_map.h | TITLE: BFS using map, so extra log factor |
algo_rag_data/graph/bipartite_coloring.h | TITLE: Bipartite coloring (color graph with 2 colors) |
algo_rag_data/graph/bipartite_edge_coloring.h | TITLE: returns vector of {vertex, id of edge to vertex} |
algo_rag_data/graph/bipartite_matching.cc | TITLE: Ford-Fulkerson' maximum bipartite matching |
algo_rag_data/graph/bridge.cc | TITLE: Bridge-Block Tree (Bridge / Two-edge connected component) |
algo_rag_data/graph/chromatic_number.cc | TITLE: Exact Algorithm for Chromatic Number |
algo_rag_data/graph/cycle_enumeration.cc | TITLE: Hawick and James' cycle enumeration |
algo_rag_data/graph/dijkstra.h | TITLE: Dijkstra |

algo_rag_data/graph/dominator_tree.cc | TITLE: Dominator Tree (Lengauer-Tarjan) |
algo_rag_data/graph/dynamic_reachability_dag.cc | TITLE: Italiano's dynamic reachability data structure for DAG |
algo_rag_data/graph/euler_tour_tree.cc | TITLE: Euler Tour Tree |

algo_rag_data/graph/eulerian_path_undirected.cc | TITLE: Undirected Eulerian Path (Hierholzer's algorithm) |
algo_rag_data/graph/find_triangles.h | TITLE: Find all cycles of length 3 (a.k.a. triangles) |
algo_rag_data/graph/floyd.h | TITLE: Floyd algorithm |

algo_rag_data/graph/ford_bellman.h | TITLE: Ford Bellman, O(NxM) |

algo_rag_data/graph/gabow_edmonds.cc | TITLE: General Graph Matching (Gabow-Edmonds) |

alao raa data/araoh/hamilton cvcle ore.cc | TITLE: Hamilton Cvcle for aranhs with Ore condition |

Look at the list and give {files: [..]} to include for code generation

(¥ Hi,I'm DeepSeek.

How can | help you today?

Below is the code that solves a competitive programming problem using LLM.

it works fine but | need you to make a more advanced version of it:

| want to help the system solving problems by including implementation of relevant algorithms & data structures. | put
200 correct c++ snippets into the dir ./algo_rag_data/[category]/[algo name].cpp

The first line always has comment // with the title of the algo.

Please add one more JSON LLM call to determine which knowledge items to use. Give it list of all items like this:

| FILE: ./data_structure/fenwick_tree_2d.cpp | TITLE: Efficient implementation of Fenwick 2D |

| FILE: ./graphs/dijkstra.cpp | TITLE: Dijkstra algorithm |

If based on initial description any of these items are needed, include such files into the code gen prompt.

Additionally, think how to refactor the code a bit, to make it more straightforward and avoid duplication.

CURRENT CODE:
import path from 'path’;

gﬂ DeepThink @ search (I]J o

Knowledge
200 algorithms & data structures

__ —Pplzoptimize algo_ __
relevant o ~

M'tdes implementations 52 = = ~
Vi __ plzfix bug—_ - N
W - k
\ \
Problem LLM hi htLM LLM Validate _ | Execute c++ Full output
statement.txt verbal solution Witl:::ms r:gv:;eed?ge write code test samples “| compile & run full_out.txt

A

Example
sample_in.txt
sample_out.txt

Full input

full_in.txt

& Hi, I'm DeepSeek.

How can | help you today?

Below is the code that solves a competitive programming problem using LLM.

it works fine but | need you to make a more advanced version of it:

There are sample_in.txt and sample_out.txt used for validation. Use LLM to manually generate
synthetic_sample_in.txt and synthetic_sample_out.txt in similar format, focusing on the problem edge cases.
The test should be generated IN PARALLEL to the solution.

Additionally, think how to refactor the code a bit, to make it more straightforward and avoid duplication.
CURRENT CODE:
import path from 'path’;

import fs from 'fs/promises’;

import { spawnSync } from 'child_process';

&3 DeepThink €] Search @J G

main().catch(err => {

console.error('Unexpected error:', err);
process.exit(1);

Explanation

1. Synthetic Test Generation: The generateSyntheticTests method uses the LLM to create edge case test

cases. These are saved to synthetic_sample_in.txt and synthetic_sample_out.txt .

2. Code Refactoring: The runSolution method centralizes the execution of the solution code, reducing

redundancy. The validateAllSamples method runs both original and synthetic tests, enhancing validation

coverage.
3. Error Handling: Errors during validation are augmented with test case context, improving
feedback. This helps the LLM understand which test case failed, facilitating iterative code

4. Parallel Processing: Synthetic tests are generated during initialization, ensuring they are
validation as soon as the solution code is generated. This parallel approach ensures comp

from the first iteration.

This approach ensures that the solution is robust, efficient, and handles edge cases effectivel

clean and maintainable code structure.

OO

debugging
correction.
auailabla for -
v 7 PROBLEMS
v AplusB @ © synthetic_sample_in.txt
full_out.txt &
@ solution 11
« solution.cpp 1 100000
" — 100000 1
solution_description.txt 100000 100000
99999 1

synthetic_sample_out.txt
synthetic_sample_in.txt
statement.txt
sample_out.txt

full_in.txt

sample_in.txt

50000 50000

Knowledge
200 algorithms & data structures

__ —plz optimize algo_ __

! relevant — —~
sl nes implementations P = ™ e
Vi plz fix bug—_ =
l \ w . =~ N
AY \
Problem LLM . ht”"'l . LLM Validate | Execute c++ Full output
statement.txt verbal solution Witlecms r:gv&/see’?e write code test samples ~| compile & run full_out.txt

A

Example
sample_in.txt
sample_out.txt

LLM
more tests

Full input

full_in.txt

Codeforces Rating Distribution (active user, number of participations >= 6) March 5, 2024

6000
5000

4000

For hard problems will still fail
most of the time

3000

Number of contestants per bin

2000

1000

3000 3500

Knowledge o
200 algorithms & data structures

Rating

__plz optimize algo_
- —
! relevant — S
all titles : A ~ s
l implementations e ~

g - plz fix bug—_ - N

/3 B)
—_—
Problem LLM o htLMl 4 LLM Validate _ | Execute c++ /[Full output
statement.txt verbal solution WHich Soweags write code test samples " | compile & run '\\ full_out.txt)

items to use? ,
A

\ V- B
i Example Full input)
{ sample_in.txt full in.txt

Codeforces Rating Distribution (active user, number of participations >= 6) March 5, 2024

6000

5000

in

4000

For hard problems will still fail
most of the time

3000

2000

Number of contestants per bi

1000

Lets S CA L E f 200 algoriﬁ%ivgzgglestructures ’ Rating e >0

o —plz optimize algo_ __

! relevant i i
S sce implementations - ca i ~
7 __ plzfix bug—_ N
i b, =3 ~~ N\
(Brentiin D LLM - i =N
(roblem LLM K tmowded LLM Validate Execute c++ [Full output
> e — = . { :
statement.txt / verbal solution WHICIEEHIoWIeodS write code test samples compile & run \ ful_outtxt /
ST 4 items to use? -
A
/ = E I \‘\ LA .
/ xample / .
LLM | p \ (Full input \
< { sample_in.txt) (Rill i fie)
(e ==t _ sample_out.txt & = 4

verbal solution

Google Cloud Run

Knowledge
200 algorithms & data structures

relevant —

all titles < A
implementations

l

LLM
which knowledge
items to use?

Validate _ | Execute c++
test samples " | compile & run

write code

Example
sample_in.txt
sample_out.txt

Full input
full_in.txt

LLM
more tests

Full output
full_out.txt

& Hi, I'm DeepSeek.

How can | help you today?

Below is the code that solves a competitive programming problem using LLM.

it works fine but | need you to make a more advanced version of it:

| don't like executing unreviewed C++ code on my machine and want to move it to Google Cloud Run lambdas.
Please create a separate gcloud run that takes C++ code, input data - it compiles it, executes and returns the output
data. Teach me how to deploy this code and use the service url in my file

Additionally, think how to refactor the code a bit, to make it more straightforward and avoid duplication.
CURRENT CODE
import path from 'path';

import fs from 'fs/promises’;

import { spawnSync } from 'child_process';

&3 DeepThink @D Search @ 0

I'll help you create the Cloud Run service and refactor the code. Here's the step-by-step solution:
1. First, let's create the Cloud Run service:
server.js (Cloud Run Service)

JEVER-1

import express from 'express';
{ spawnSync } from 'child_process';
{ tmpdir } from 'os';

import { join } from 'path';

import { writeFile, rm } from 'fs/promises’;

import
import

const app = express();
app.use(express.json());

app.post('/execute', async (req, res) => {
const { code, input, timeout = 10000 } = req.body;
tempDir = tmpdir();
cppFile = join(tempDir, 'solution.cpp');
t exeFile = join(tempDir, 'solution');

try {

await writeFile(cppFile, code);

const compile = spawnSync('g++',
'—std=c++17",
£=025)
'-0', exeFile,
cppFile
1, { encoding: 'utf-8' });

if (compile.status !== 0) {
return res.status(400).json({
error: 'CompilationError',
age: compile.stderr

const execution = spawnSync(exeFile, {
input,
encoding: 'utf-8',
timeout: parseInt(timeout)

3

if (execution.error?.code 'ETIMEDOUT') {
return res.status(400).json({
error: 'TimeoutError',
message: ‘Execution timed out after ${timeout}ms’
});

if (execution.status !== 0) {

const port = process.env.PORT || 8080;
app. listen(port, () => {
console. log('Service running on port ${port}’);

Dockerfile

dockerfile

FROM node:20-alpine
RUN apk add --no-cache build-base

WORKDIR /app

COPY packagex.json ./
RUN npm install

COPY .

CMD ["node", "server.js"]

Deploy to Cloud Run:

gcloud builds submit --tag gcr.io/YOUR_PROJECT_ID/cpp-executor

gcloud run deploy cpp-executor \
-—image gcr.io/YOUR_PROJECT_ID/cpp-executor \
—platform managed \
——allow-unauthenticated \
——memory 2Gi \
——timeout 900

Here's the refactored ProblemSolver class with Cloud Run integration:

refactored ProblemSolver.js

javascript

import path from 'path';

import fs from 'fs/promises';

import { spawnSync } from 'child_process';
import OpenAI from 'openai';

class ProblemSolver {
constructor(problemDir, algoRagDir = './algo_rag_data') {

OpenAl Monthly Spend $45750

$500

HACKER CUP

FINAL ROUND

-~ Stackfish - Competitive Programming Solver

& STACKETRN

F AWANS e .

@ @ v - -

W e q VS -

B S g e

[I ——

L L

W v

1 od N

v an & PAEN G e A e

R @ry ow e L I

L T Searvaa C R
WPy S e s
0y Ay -

@ ¥ ey -

¥ aew »

Q o bt o

@ e e e

P Y Se— »
fFawmer ey hrmrs by e
& - - " A wman L
- e - -

L N e)
LU .
O b b 10w

ithub.com/anton10xr/stackfish

http://www.youtube.com/watch?v=yPXMvMmeemU

Building block: The augmented LLM

The basic building block of agentic systems is an LLM enhanced with

augmentations such as retrieval, tools, and memory. Our current Workflow: Orchestrator-workers Workflow: Prompt chaining
models can actively use these capabilities—generating their own In the orchestrator-workers workflow, a central LLM dynamically Prompt chaining decomposes a task into a sequence of steps, where
search queries, selecting appropriate tools, and determining what breaks down tasks, delegates them to worker LLMs, and synthesizes each LLM Cap DICCESSCS 'hf 0“?‘_“ °m‘e_ previous one. You can add
inf R R their results programmatic checks (see "gate” in the diagram below) on any
inicimatomoretan;) intermediate steps to ensure that the process is still on track.
In LLM out
L > el Pess | Limcanz 5> | LLMCall3 5 [out
A - - Output2
Query/ . Read/ .) in > | LLmcall > | cate
Results . Re(ﬁ::‘\’lise Write In > Orchestrator > LLMCall2 > Synthesizer > | Out Output 1 s (o
: 0] v Kl Fail
v T LLMcall3
Retrieval Memory
Tools
The prompt chaining workflow
The orchestrator-workers workflow
The augmented LLM
Workflow: Parallelization
LLMs can sometimes work simultaneously on a task and have their
outputs aggregated programmatically. This workflow, parallelization,
Workflow: Routing manifests in two key variations:
Routing classifies an input and directs it to a specialized followup . Sectioning: Breaking a task into independent subtasks run in
task. This workflow allows for separation of concerns, and building parallel.
more specialized prompts. Without this workflow, optimizing for one Workflow: Evaluator-optimizer . Voting: Running the same task multiple times to get diverse
kind of input can hurt performance on other inputs. In the evaluator-optimizer workflow, one LLM call generates a outputs.

response while another provides evaluation and feedback in a loop.

Solution
_—> Lmcall1 — LLMCall1
S) ~
5 [LLMCall LLM Call LLM Call
In | —> - > LLMCall2 > | Out In > - = 5> [out In ——> LLMCall2 ——> Aggregator ——> | Out
Router 7 Generator Evaluator
Accepted
A R 2 AN
> | LLMCall3 ~— = LLMcal3
Rejected +
Feedback
The evaluator-optimizer workflow
The routing workflow The parallelization workflow

Learn more about agents https://anthropic.com/research/building-effective-agents

© @ Q&A.png M Open with Preview ‘

